
Differentially Private Two-Party Set Operations

Bailey Kacsmar∗, Basit Khurram∗, Nils Lukas∗, Alexander Norton∗, Masoumeh Shafieinejad∗,
Zhiwei Shang∗, Yaser Baseri∗, Maryam Sepehri†, Simon Oya∗, Florian Kerschbaum∗

∗Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
∗{bkacsmar, mbkhurra, nlukas, ar2norto, masoumeh, z6shang, ybaseri, simon.oya, fkerschb}@uwaterloo.ca

†Dipartimento di Informatica, Universita degli studi di Milano, Milan, Italy
†maryam.sepehri@unimi.it

Abstract—Private set intersection (PSI) allows two parties to
compute the intersection of their data without revealing the
data they possess that is outside of the intersection. However,
in many cases of joint data analysis, the intersection is
also sensitive. We define differentially private set intersection
and we propose new protocols using (leveled) homomorphic
encryption where the result is differentially private. Our
circuit-based approach has an adaptability that allows us
to achieve differential privacy, as well as to compute predi-
cates over the intersection such as cardinality. Furthermore,
our protocol produces differentially private output for set
intersection and set intersection cardinality that is optimal
in terms of communication and computation complexity. For
a client set of size m and a server set of size n, where m

is smaller than n, our communication complexity is O(m)

while previous circuit-based protocols only achieve O(n+m)

communication complexity. In addition to our asymptotic
optimizations which include new analysis for using nested
cuckoo hashing for PSI, we demonstrate the practicality
of our protocol through an implementation that shows the
feasibility of computing the differentially private intersection
for large data sets containing millions of elements.

Index Terms—differential privacy, homomorphic encryption,
private set intersection

1. Introduction

Private set intersection (PSI) [1]–[3] can protect sen-
sitive data when the intersection is non-sensitive. It is, for
example, used by Google and a partner to compute ad con-
versions [4]. In this work, we present protocols designed
for cases of joint data analysis where the intersection is
also sensitive.

Consider the following case where Google and Mas-
tercard exchanged credit card transaction data without
PSI [5]. Google paid Mastercard to access individuals’
credit card transactions that they could match to those
users’ presented ads. One can argue that the fact that a
credit card purchase was made is personally identifiable
information. User-specific credit card purchases have been
used to de-identify anonymized credit card statements [6].
Hence, it is necessary to protect, not only the users outside
of the intersection, but those inside it as well. To address
the protection needed for users inside the intersection
of two data sets, we propose a new variant of PSI and
demonstrate that our construction for this variant can be
used in practical settings.

In this paper, we define differentially private set oper-
ations and we contribute a new private set intersection
protocol whose result is differentially private, i.e., the
intersection is protected as well. Circuit-based PSI proto-
cols [7]–[9] can perform this function in theory. However,
we improve over those protocols in communication com-
plexity and memory consumption. For large circuits the
memory consumption is commonly the bottleneck [10].
Furthermore, even in the best case for previous circuit-
based protocols, the communication complexity is the sum
of the sizes of the two databases [9].

We present the first circuit-based PSI protocol based
on (leveled) homomorphic encryption. Our solution is
asymptotically optimal in a number of criteria: Let the
client have a set of size m and the server a set of size
n where m < n. Then, our communication complexity is
O (m).1 Our computation complexity is O (n+m) (or
O (n) since m < n). Our differentially private output
is optimally accurate for set intersection cardinality [13].
Note that the most recent circuit-based PSI protocols [8],
[9] have communication complexity at least O (m+ n)
and previous PSI protocols based on homomorphic en-
cryption [11], [12] cannot compute arbitrary circuits (as
is necessary for differential privacy) in addition to having
computation complexity O(nm).

Next to the theoretic optimality, we perform a number
of optimizations that make our protocols practical. Let
each element have a bit length ` ≥ log n. The multiplica-
tive depth of our circuit is log ` + 1 which is six multi-
plications for 32 bits and hence practically feasible with
many homomorphic encryption schemes. Furthermore, we
use vectorization of the plaintexts, and our implementation
uses a hashing technique that achieves better performance
than the asymptotically optimal cuckoo hashing. We are
the first to show that the secure computation of differen-
tially private set operations – intersection and intersection
cardinality – is practically feasible. While our practical
performance cannot compete with the most efficient pro-
tocols – either using homomorphic encryption [12] or
circuit-based [9] – we can reasonably handle large data
sets up to millions of elements, and these protocols [9],
[12] do not protect privacy in the intersection.

In particular, our communication cost when comparing
m = 4096 client elements to n = 106 server elements

1. Actually, our communication complexity is O(m`), where ` rep-
resents the bit length. However, we use the notation of recent related
work [8], [9], [11], [12] where ` is assumed constant, and concentrate
on the parameters n and m.

is only 232MB whereas other circuit-based approaches
are much higher in terms of communication cost for like
parameters. For example, the latest approach in [9] needs
2.5GB for similar parameters. The lower communication
cost directly translates to lower memory requirements,
since the majority of the communication cost in the other
approaches is spent on the circuit (96% according to [9]).

Contributions. This paper contributes new PSI proto-
cols based on leveled homomorphic encryption that

• compute a differentially private result for both the
set intersection or the set intersection cardinality,

• have optimal communication and computation
complexity as well as accuracy for a given privacy
parameter,

• are practical for large data sets up to millions of
elements.

Organization. The remainder of our paper is organized
as follows. Section 2 introduces use cases for our new
differentially private PSI protocols. Section 3 contains
related work, while Section 4 contains the preliminaries
needed to understand our work. In Section 5 we define
differentially private set operations, and in Section 6 we
explain our constructions. Section 7 contains the com-
plexity, security, and privacy analyses of our algorithms,
and the performance results of our implementation are
discussed in Section 8. Section 9 concludes our work.

2. Use Cases

Private set intersection (PSI) is a useful tool with many
applications. However, in many cases not only are the
elements outside the intersection sensitive, but also the
elements inside. In this paper, we propose a mechanism
to protect the set intersection itself via differential privacy.
Our mechanism can also be used to compute differentially
private predicates over the intersection. We give an algo-
rithm to compute one of these predicates, namely the set
intersection cardinality. Our protocol can be extended to
compute other predicates with minimal changes, such as
computing whether or not two parties have any elements in
common, or computing a weighted sum of the intersection.

We emphasize that providing (leakage-free) crypto-
graphic security in this context is not feasible, since some
information needs to be revealed to the other party as the
result of the analyses. However, differential privacy is a
well suited privacy notion for PSI. Differential privacy
guarantees that inferences about any individual element
in the database are limited while aggregate data, in many
cases, is accurate enough for meaningful analyses. The
cost for differential privacy comes in terms of false posi-
tives and false negatives in the intersection. However, this
cost can be configured to the relevant application as in the
following case.

Consider two network operation centers that try to
determine joint cyber threats. As a first step, they would
like to determine which threat indicators [14] they have in
common. By using our scheme, these parties can compute
a differentially private intersection that protects each set.
Depending on their security and privacy preferences, the
operation centers may choose a different false positive and
negative trade-off. Security-sensitive centers might want
to avoid missing common threats – low false negative

rate – but can tolerate high false positives. However,
privacy-sensitive centers might want to avoid revealing
data unrelated to common threats – low false positive rate
– and focus their attention to a few surely common threats
– high false negative rate.

For parties interested in computing a differentially
private version of the intersection cardinality, consider
the use of genome databases [15] in medical research.
A genome database can enable researchers to analyze
pre-dominant alleles in certain single-nucleotide polymor-
phisms (SNPs) for a subset of patients – similar to a
genome-wide association study [16]. The database allows
privacy-preserving queries of the following form: A client
assembles a set of patients with a specific trait, e.g., a
certain disease. The client then queries the intersection
cardinality of their own set and the database and the
intersection cardinality of their own set and all elements
in the database that have a specific allele. The quotient
determines the impact of that allele on this specific illness.
Using our differentially private protocols the accuracy can
be sufficiently high to allow the researcher to perform
meaningful analyses, but prevent a malicious client from
inferring genetic information about a specific individual.
Note this use case also has imbalanced set sizes, since the
set of queried patients is almost always much smaller than
the set of patients in the database, and therefore benefits
from our design.

Finally, for other predicates over the set intersection,
recall the case of Google and Mastercard that we men-
tioned in the introduction. Assume Google and Mastercard
identify the set of users that they have in common in
a certain period of time. The result would be users that
viewed Google ads from vendor V and that had Master-
card transactions with vendor V . Next, assume the sum of
the credit card transactions are computed over the result.
If the ad was very specific and only one user viewed
it, the sum would reveal part of the purchase history of
this user. A differentially private sum – which is only a
slight variation of our set intersection cardinality – would
conceal that information with the privacy parameter ε.
Using our protocols, only the differentially private sum
(and one party’s set size) is revealed.

3. Related Work

Early constructions for private set intersection em-
ployed public-key cryptography [2], [3] to some suc-
cess with respect to communication cost. However,
their computation overheads were substantial. Since then,
constructions employing oblivious polynomial evalua-
tion (OPE) [1], Oblivious Pseudo-Random Functions
(OPRF) [17], [18], Oblivious Transfers (OT) [19]–[24],
and Homomorphic Encryption (HE) [11] have been pro-
posed. These proposals offer different trade-offs in terms
of their computational cost and communication overhead.
OT-based protocols are typically faster than other vari-
ants [18], [23], [24], but are outperformed in asymptotic
communication complexity by the HE-based approach by
Chen et al. [11], whose communication complexity is
linear in the smaller set size and logarithmic in the larger
set size. Recent work by Pinkas et al. [22] achieves a better
balance of computation and communication costs, and has
the least monetary cost out of all known protocols.

PSI can be designed with optimizations for the bal-
anced and unbalanced use cases. Balanced PSI refers to
the setting where the client and the server posses datasets
of comparable sizes. In contrast to this, unbalanced PSI
refers to the setting where one of the parties, say the
server, has a substantially larger dataset than the other
party; such as in the case of private contact discovery [25].
The PSI protocols from Pinkas et al. [21], [22] consider
both balanced and unbalanced use cases, but in the un-
balanced case are asymptotically outperformed in terms
of communication complexity by Chen et al. [11]. Our
protocol is surprisingly efficient in the unbalanced PSI
setting, since it achieves a communication complexity of
O(m), where m is the size of the smaller set, outperform-
ing Chen et al. [11] in practice. Although our protocol can
be expensive in non-asymptotic regimes, its running time
can be significantly decreased through parallelization.

Some PSI constructions allow for the secure com-
putation of predicates over the set intersection, such as
the cardinality, a weighted sum of the intersection, or the
noise that is required to provide differentially private pred-
icate outputs. Special constructions exist that compute key
agreement over an intersection of credentials [26]. Most
constructions that we mentioned above, including [11],
cannot be efficiently modified to support the differential
private setting we are working in and do not support addi-
tional computation over the intersection such as that found
in works by Pinkas et al. [8], [9]. Our construction has
the adaptability for computation of predicates observed in
[8], [9], while optimizing in asymptotic communication
complexity over [11].

3.1. Private Set Operations

For private set operations, protocols for intersec-
tion, union, and cardinality are defined by Davidson and
Cid [27]. Protocols also exist for PSI threshold cardinality,
which return whether or not the intersection is greater
than a certain threshold [8], [28]. Finally, Ciampi and
Orlandi’s protocol is designed to compute arbitrary func-
tions on set intersections [29]. Our construction for DiPSI
includes functionality for computing the cardinality of the
set intersection in a differentially private way, but such
computations need not be limited to cardinality and could
be potentially extended to include other operations as has
been done for PSI protocols.

3.2. Differentially Private Set Computations

Gopi et al. [30] define a differential privacy mech-
anism for the set union in the central curator model.
However, they do not provide a secure computation over
several databases as we do.

Private record linkage identifies pairs of records that
are similar to one another according to some pre-defined
rule. Recent work from He et al. [31], with techniques
further improved by Groce et al. [32] for PSI, employs
differential privacy and secure computation to solve this
problem. The techniques used by He et al. [31] for match-
ing elements are similar to the ones used here. However,
in order to fulfill their (slightly weaker) security notion,
they require databases to be f -neighbours. f -neighbouring
is a restriction on the common neighbouring definition in

differential privacy that removes pairs of neighbors that
differ in their output of the protocol and thereby partitions
the neighbouring graph. This restriction, of course, fails to
protect the intersection. In this work we use the common
definition of neighbouring in differential privacy where
any databases that differ in one element are neighbours
– even if this element is included in the set intersection
– and the impact of the difference on the output of
the protocol is limited. This protects the intersection in
the stronger simulation-based computational differential
privacy model.

4. Preliminaries

4.1. Differential Privacy

Definition 1. (ε-Differential Privacy [33]). A randomized
mechanism M : D 7→ F provides ε-differential privacy
(ε-DP) iff for all neighbouring inputs D,D′ ∈ D, i.e.,
differing in one element, and all subsets F ⊆ F ,

Pr[M(D) ∈ F] ≤ eεPr[M(D′) ∈ F] , (1)

where the probability space is M ’s coin tosses.

ε-Differential Privacy guarantees that for every run
of the mechanism M(·), the perturbed output is (almost)
equally likely to be observed on D and D′.

We use an adaptation of the ε-differential privacy
definition, simulation-based computational differential pri-
vacy, due to Mironov et al. [34] in our security analysis.

Definition 2. Simulation-Based Computational Differ-
ential Privacy (SIM-CDP privacy [34]). An ensemble
{mk}k∈N of randomized functions mk : D 7→ F provides
εk-SIM-CDP if there exists an ensemble {Mk}k∈N of εk-
differentially private mechanisms Mk : D 7→ Fk and a
negligible function negl(n) (·), such that for every non-
uniform probabilistic polynomial time Turing machine A,
every polynomial p(·), every sufficiently large k ∈ N,
every data set D ∈ D of size at most p(k), and every
advice string zk of size at most p(k), it holds that,

|Pr[Ak(mk(D)) = 1]− Pr[Ak(Mk(D)) = 1]| ≤ negl(n) (k).
(2)

That is, mk(D) and Mk(D) are computationally in-
distinguishable.

The above requires the existence of an ε-differentially
private mechanism M (termed a simulator), such that
the simulator M(D) and a computed function m(D) are
computationally indistinguishable for every set D.

4.2. Private Set Operations

We define privacy in the semi-honest model. For a
deterministic function f , we say that a protocol π securely
computes f if a participant P ’s view of the information
after π completes could be generated by a simulator given
only the input from P and the output of the protocol.

Definition 3. Formally, we define a function f and a two-
party protocol for computing f , denoted by π. The view
of the ith party during the execution of the protocol π on
inputs (x, y) is denoted V IEWπ

i (x, y) for i representing

participant P1 or participant P2. The output of the protocol
π on inputs (x, y) is denoted OUTPUTπ(x, y). The
protocol π securely computes f if there exists polynomial-
time algorithms, denoted Sim1 and Sim2, such that

Sim1(x, f(x, y))
c
= (V IEWπ

1 (x, y), OUTPUT
π(x, y)) ,

Sim2(y, f(x, y))
c
= (V IEWπ

2 (x, y), OUTPUT
π(x, y)) .

Let X be a set of size m and let Y be a set of size n
belonging to a client and server respectively and assume
that the sizes, m and n, are known to both parties and can
be safely revealed to one another during the protocol. We
define the following set operations:

Definition 4. Private Set Intersection (PSI). For the sets
X and Y, compute X ∩ Y such that the client learns X ∩
Y while the server learns no additional information and
security is met as per Definition 3.

In this definition, the client learns nothing additional
about the elements belonging to Y \ (X ∩ Y).

Definition 5. Private Set Intersection Cardinality (PSI-
CA). For the sets X and Y, compute |X∩Y| such that the
client learns |X∩Y| while the server learns no additional
information and security is met as per Definition 3.

The client learns nothing additional beyond |X ∩ Y|.
In Section 5, we extend these definitions to the dif-

ferential privacy setting, so that the computation result
observed by the client (i.e., the set intersection X ∩ Y
or the intersection cardinality |X ∩ Y|) is perturbed by
noise which prevents the client form learning a significant
amount of information about the server data Y.

4.3. Homomorphic Encryption

Homomorphic encryption (HE) schemes are used to
perform computations on ciphertexts which then decrypt
to the same result as if these computations were performed
on plaintexts. HE is especially useful in situations where
one party has access to vast computing power while the
other party may be modeled with limited computational
resources. The secret key to the encryption is only acces-
sible by one party, typically the computationally restricted
one, while the other party learns nothing about interme-
diary or final results of the computations. Following the
definition of Yi et al. [35], let (P,C,K,E,D) be an
encryption scheme with P,C as the plaintext and cipher-
text space, K the key space and E,D as the encryption
and decryption algorithms. If (P, �) and (C,�) form an
algebraic group, then homomorphic encryption using a
secret k satisfies the following for all p, p′ ∈ P, k ∈ K:

Ek(p)� Ek(p′) = Ek(p � p′)

There are three types of HE schemes that are important for
our application: Somewhat HE (SWHE), Fully HE (FHE)
and Leveled HE (LHE). All schemes are based on the
notion of a noise that is embedded into every ciphertext
during encryption. This noise grows with each operation
and effectively limits the maximal applicable operation
depth. Once a threshold is exceeded, the noise overwrites
the encoded data and renders it non-decipherable, whereby
multiplications typically lead to a significantly larger noise
growth than additions. SWHE allow for additions and

multiplications, but they do not have a way of resetting
the noise term. FHE schemes extend SWHE schemes with
a function called bootstrapping, which evaluates the re-
encryption of a ciphertext as a function within the HE
and thereby resetting the noise in the ciphertext at a con-
siderable computational cost. Lastly, LHE does not rely
on bootstrapping but rather allows choosing parameters to
accommodate for a fixed operation depth while inducing
a “quasi-linear” growth of the computation complexity
in the security parameter, as described in [36]. However,
the operation depth must be known beforehand, which
is the case for our DiPSI protocol. Further efficiency im-
provements can be obtained through “ciphertext packing”,
where a vector of plaintexts is encrypted into separate
slots of a ciphertext, while data-flow between slots is not
possible. This allows for inherent parallelization through
single instruction, multiple data (SIMD) operations if the
encoded elements can be processed independently from
each other.

4.4. PSI via Hashing-to-Bins

A naive scheme for computing the intersection be-
tween two sets consists of comparing each element from
the first set with each element from the second set. This
is highly inefficient in terms of computation. One solution
to this problem is to organize the set elements into “bins”
within a table, and then perform the comparison only
between elements within the same bins. Such solutions
are called hashing-to-bins techniques, since they use hash
functions to assign elements to bins within a table [21],
[24], [37]. In this work, the techniques we use for hash-
ing to bins exclusively consist of employing two hash
functions to place inputs in one of two tables or in a
secondary storage location called the stash. Each table
consists of bins and each bin contains an agreed upon
γ number of bin elements. If the client and the server
agree upon appropriate hash functions in advance, then it
is only necessary to compare inputs that are mapped to
the same bins. Note that for both the server and client it is
necessary to always send the γ number of bin elements by
adding dummy elements as doing otherwise would reveal
the number of elements that are mapped to a particular
bin and as a result leak information about the inputs [8].

4.5. Collision Handling and Hashing-to-Bins

When using hashing-to-bins techniques it is possible
for a collision to occur. A collision occurs when the
bin an element has been hashed to has already reached
the maximum number of elements, γ. In this section,
we discuss three of the possible techniques for handling
collisions when performing hashing-to-bins.

4.5.1. Cuckoo Hashing. Cuckoo hashing [38], [39] is a
technique that handles collisions by ejecting the element
currently in a bin, replacing it with the latest element and
then hashing the ejected element with a different hash
function. Consider a simple instance of cuckoo hashing
with two hash functions, H1(x) and H2(x). Define T1
and T2 as the tables belonging to H1(x) and H2(x)
respectively. Both T1 and T2 are of size (1 + ε)n, where

ε is a chosen constant value, for example ε = 0.6.2 For
any element x, first compute H1(x). Place x in the bin
corresponding to T1[H1(x)]. For cuckoo hashing, each bin
can contain at most one element (γ = 1). Therefore, if
T1[H1(x)] is occupied by an element y, remove y and
compute a new location, T2[H2(y)]. After placing y, if
the new location is also occupied, the original occupant is
again removed and hashed to a different location. This
continues until a maximum threshold of attempts has
passed, at which point the value is placed in the stash.
Any element x hashed using this method can be found
in either T1[H1(x)], T2[H2(x)], or the stash. Therefore, a
look-up takes O(1). See Kirsch et al. [40] for the analysis
of using cuckoo hashing with a stash in this manner.

4.5.2. Nested Cuckoo Hashing. A modified version of
cuckoo hashing with a stash, called nested cuckoo hash-
ing, was proposed by Goodrich et al. [41]. The modified
hashing structure employs a primary cuckoo structure
with a secondary cuckoo structure in place of the pri-
mary structure’s stash. For nested cuckoo hashing, after a
threshold number of attempts at placing the element in the
primary cuckoo structure (with hash functions H1 and H2,
and tables T1 and T2), the secondary cuckoo structure is
employed (with hash functions H3 and H4, and tables
T3 and T4). The secondary cuckoo structure works in
the same manner as the conventional cuckoo hashing we
originally presented, however, each of its tables contain
m′ elements, where m′ ≤ m and m is the number of
elements in the primary cuckoo structure’s tables.

When using cuckoo hashing with a stash it is necessary
to account for a failure state. A failure state occurs when
it is necessary to place an item in the stash, because the
number of insertion attempts has passed the threshold, but
the stash is full. When such a failure state is reached, one
cannot simply select new hash functions as such an action
has the potential to leak information about the data, since
the hashes are no longer truly random. Fortunately, the
probability of a failure state for nested cuckoo hashing
is shown to be negligible given the results found in
Theorem 1 and Theorem 2 from Goodrich et al. [41].

4.5.3. Dual Hash Function with Bin Sizes γ ≥ 1. A
variant of cuckoo hashing, dual hashing, consists of two
hash functions. A table contains m bins and unlike cuckoo
hashing each bin contains an agreed upon γ number of
bin elements where γ ≥ 1. For any element x, compute
H1(x) and H2(x). Append the value x to whichever
bin, T [H1(x)] or T [H2(x)], contains the fewer number
of elements. After hashing all of the inputs, the client
appends dummy elements for each bin in T until all bins
hold γ elements so as not to leak information about the
data set in this manner.

4.5.4. Matching for Hashing-to-Bins. When using
cuckoo hashing or its variants it can be tempting to
have both parties hash all of their elements using the
selected cuckoo hashing method and then compare only
the elements that were hashed to the same ‘bin’. However,
such a comparison strategy would miss matches as it is
possible for the client to map an element x to H1(x) while

2. Note that this ε is distinct from the ε used for differential privacy.

the server mapped x to H2(x). Therefore, an alternate
strategy is required. One technique is to have the client use
cuckoo hashing while the server employs regular hashing.
That is, the server hashes all n elements with H1(x) and
H2(x). When used with our batching strategy presented
in Section 6, the resulting process requires O(nγ) com-
parisons to determine the intersection, where γ represents
the bin capacity. Note that γ = 1 for conventional cuckoo
hashing and γ ≥ 1 for the dual hashing variant. Briefly,
the intuition for O (nγ) comparisons is that for each
ciphertext sent by the client to the server, the server does
not know whether or not the ciphertext corresponds to T1
or T2. Therefore, the server must compare each ciphertext
with the appropriate bins in both T1 and T2. This results
in O(2nγ) = O(nγ) comparisons.

5. Differentially Private Set Operations

In this section, we extend the private set intersection
definitions from Section 4.2 to account for the differential
privacy setting. As before, let X be the client set, of size
m, and let Y be the server set, of size n. Assume that m
and n are known to both parties.

As explained before, we consider a semi-honest server
model, where the server follows the protocol truthfully but
might be interested in learning information about X. Our
differential privacy definition is one-sided, in the sense
that it ensures that the server learns nothing about the
client’s dataset X, and the client learns a differentially
private version of the intersection or intersection cardi-
nality. This prevents the client from learning significant
information about the server dataset Y.

Let Y ∼ Y′ be neighbouring datasets, i.e., they differ
on a single element. Let X be the domain of each element
in X and Y.

Definition 6. ε-Differentially Private Set Operations (ε-
DiPSI). The two party computation algorithm M : Xm×
Xn → F , that takes the client and server data sets
and returns a perturbed operation (e.g. intersection or
intersection cardinality) to the client, achieves ε-DiPSI iff,
for all F ⊆ F , all client sets X, and all neighbouring data
sets Y ∼ Y′,

Pr(M(X,Y) ∈ F) ≤ eε Pr(M(X,Y′) ∈ F) . (3)

We propose two ε-DiPSI set operation mechanisms:
MRR−SI and MLAP−CA. The former, MRR−SI , com-
putes a differentially private set intersection. It achieves
differential privacy by using a secure implementation
of the randomized response mechanism [42] over the
result of X ∩ Y. In summary, MRR−SI , which is run
by the server, takes an encrypted version of the client
database and compares it to a plaintext version of the
server database, producing an encrypted version of the
differentially private set intersection that the client can
later decrypt. After decryption, the client learns if x ∈ Y
with probability p, and gets a random response otherwise.
Therefore, the client cannot know for certain whether or
not a certain element x is in Y.

MLAP−CA computes a differentially private set in-
tersection cardinality. It uses a secure implementation of
the Laplacian mechanism [42] to guarantee differential
privacy. In short, after receiving an encrypted copy of

or

oror

Client Server

Figure 1. DiPSI Protocol Overview

the client’s data, the server performs a comparison with
their plaintext data, and returns the encrypted intersection
cardinality |X ∩ Y| perturbed with Laplacian noise to
the client. This noise ensures that the client cannot gain
significant information about the server dataset. The server
does not learn anything in the process.

We implement both mechanisms in ε-SIM-CDiPSI
private protocols:

Definition 7. A randomized protocol π : Xm×Xn → F
provides ε-SIM-CDiPSI if there exists an ε-DiPSI mech-
anism M : Xm × Xn → F and a negligible function
negl(n) , such that for every non-uniform probabilistic
polynomial time Turing machine A, all client sets X and
server sets Y, it holds that,

|Pr[A(V IEWπ
client(X,Y)) = 1]

−Pr[A(Sim1(M(X,Y))) = 1]| ≤ negl(n)
(4)

and
|Pr[A(V IEWπ

server(X,Y)) = 1]

−Pr[A(Sim2(m)) = 1]| ≤ negl(n) .
(5)

That is, π(X,Y) and a simulator given M(X,Y) are
computationally indistinguishable.

6. Algorithm Description

In this section, we present our constructions for dif-
ferentially private set intersection and set intersection
cardinality. These mechanisms use the same encryption
stage, but have their own specific algorithms for server
computation, client decryption, and post-processing.

6.1. Overview

Our DiPSI protocols use (leveled) homomorphic en-
cryption and proceed in three steps. First, the client en-
crypts its elements and sends them to the server. Second,
the server uses the evaluation function of homomorphic
encryption to evaluate a circuit that computes the DiPSI
functionality (either MRR−SI or MLAP−CA) and returns
the result to the client. Third, the client decrypts the result.
Figure 1 outlines the steps and the exchanged messages.

The crucial step is the evaluation on the ciphertexts
by the server. While in theory the server can evaluate any
function using homomorphic encryption, the challenge is
to keep the multiplicative depth of the circuit low in order
to avoid bootstrapping and keep the protocol practical. Our

protocol differs in this step from other PSI protocols based
on homomorphic encryption, e.g. [11], [12]. In order to ef-
ficiently evaluate predicates over the set intersection, such
as a differentially private mechanism or the set intersection
cardinality, it is necessary to compute a binary predicate of
set inclusion of each client element xi. One possible way
of doing this is using polynomial-based PSI protocols.
However, we avoid this approach since polynomial-based
PSI protocols return a multi-valued attribute where a
zero encodes a match and any other random number a
mismatch, which is hard to negate with low multiplicative
depth circuits and hence limits the predicates that can be
computed efficiently. Instead, we compute a binary-valued
predicate using a binary encoding of the set elements to
allow for efficient negation.

We employ a number of further optimization tech-
niques. As we explained in Section 4, we use hashing-to-
bins techniques to place elements into bins before match-
ing them. This keeps the computation cost at O(n), since
the server needs to match its elements only a constant
number of times (see Section 7 for analysis). Instead of
encrypting each client element x ∈ X individually, we first
encode the client’s data by spreading the bits of each client
element over multiple ciphertext vectors. This greatly
simplifies the computational cost of element comparison
on the server side, since it avoids rotation operations that
would be mandatory otherwise, saving noise budget for
multiplications. Finally, in order to implement our differ-
entially private mechanisms MRR−SI and MLAP−CA we
use dummy elements to force non-matches and obfuscate
the intersection cardinality by spreading it over a vector
and adding Laplacian noise to a single element of this
vector.

In combination, this approach ensures that we can
efficiently compute over the set intersection. We show that
it is practically feasible to compute the differential privacy
mechanisms that are appropriate for the specific predicate
of set intersection or intersection cardinality. In addition,
our protocol is well suited for use cases where the sets
are imbalanced, since due to the use of homomorphic
encryption our communication complexity is only linear
in the size of the smaller set.

6.2. Hashing-to-Bins in DiPSI

Recall that, to reduce the computational cost of the
set intersection, both client and server first hash their
dataset elements into tables, and then the server performs
a comparison between elements within the same bin only.
There are many choices of hashing-to-bins algorithms that
we could use in our DiPSI constructions. These different
choices affect the communication and computational cost
of the algorithm. We consider dual hashing (Section 4.5.3)
and nested cuckoo hashing (Section 4.5.2).

We use dual hashing for our algorithm description in
this section, and for our implementation and evaluation in
Section 8, while we use nested cuckoo hashing for our
asymptotic complexity analysis in Section 7. The reason
for this is that, for our experimentation parameters, dual
hashing is more efficient than nested cuckoo hashing. On
the other hand, nested cuckoo hashing is asymptotically
better than dual hashing (as the client and server data sets
grow in size), and thus it allows us to show the asymptotic

dd d dd

d54 221 d

1715 958 [...] d

Client Data

Table Tc

d13 d dd [...]

bin element

batch 11 10 [...] 0

00 00 [...] 0

00 10 [...] 0

bin

[...]

[...]

[...]

Figure 2. Client Side Encryption Process

Table 1. SUMMARY OF NOTATION FOR ALGORITHM DESCRIPTION
(WITH DUAL HASHING TECHNIQUE)

Symbol Meaning
Tc Client table containing m bins with γ elements.
Ts Server table containing m bins with µ elements.
x ∈ X Generic element in client’s dataset.
y ∈ X Generic element in server’s dataset.
xi,k[j] The jth bit of the ith element in the kth batch of Tc.

γ Maximum capacity in any client bin (index i ∈ [γ]).
µ Maximum capacity in any server bin (index i′ ∈ [µ]).
m Number of bins in Tc and Ts (index k ∈ [m].
` Number of bits of an element in X (index j ∈ [`]).
s Number of client elements per ciphertext (s = 4096).
t Plaintext modulus (t = 40 961).

performance that our algorithms can achieve. Later, in
Section 6.6, we clarify some specifics of our algorithm
when using nested cuckoo hashing.

6.3. Encryption

Encryption proceeds through the following stages:
hashing-to-bins, encoding, batching, and batch encryption.
The stages are detailed in the following and are presented
as Algorithm 1. Figure 2 illustrates the client encryption
process, and Table 1 contains notation used in this section.

6.3.1. Hashing-to-Bins. During the encryption stage, a
client and a server must first perform an agreed upon
process for hashing-to-bins. As mentioned above, for sim-
plicity in this section we assume the hash function used
is dual hashing. The client hashes each element x in its
set X using the process described in Section 4.5.3. After
the hashing process, the client has a table Tc containing
m bins that each hold γ elements. Recall that if a bin
does not hold γ elements at the conclusion of the initial
hashing, dummy elements are added to that bin, and any
other such bin, until all bins do contain γ elements.

Consider the example in Figure 2. Although the num-
ber of bins is abstracted, there are visibly γ = 4 bin
elements per bin. The first bin contains the values 15,
54, 13, and d, where d is the client dummy element.

6.3.2. Batching. While the hashing process is used to
allow comparisons only between elements mapped to
the same bins, batching is a technique used to combine
multiple plaintexts into a vector which is then encrypted
into a single ciphertext. By combining multiple plaintexts
into a single ciphertext, the batching process reduces the
concrete overhead of homomorphic element comparisons
through allowing the processing of multiple plaintexts in
a batch.

Batching occurs over each bin in the client’s table,
such that the ith batch contains the ith element from
every bin (k ∈ [m]) of that table. Each batch is encoded
before being encrypted. A batch i ∈ [γ] contains m
batch elements xi,1, xi,2, . . . , xi,m, each of length ` (bits).
These elements are encoded to produce vectors veci,j

.
=

[xi,1[j], xi,2[j], . . . , xi,m[j]], for all i ∈ [γ], j ∈ [`]. For
example, let a batch Bi be the set of batch elements
{2, 4, 5, 7}. Written in binary, {010, 100, 101, 111}, the
batch elements are each of at most length ` = 3. The first
vector, veci,1 consists of the first bit from each element,
producing veci,1 = 0111, while the remaining vectors are
veci,2 = 1001, and veci,3 = 0011.

The example shown in Figure 2 contains four batches.
The first batch, B1 is expanded to the right where the
first column represents the binary representation of the
first element 15. The first bit in vec1,1 represents the
most significant bit of the element 15 in the first bin. The
second bit in vec1,1 represents the most significant bit of
the element 17, and so on.

Once encoded as vectors veci,j (i ∈ [γ], j ∈ [`]), the
batched elements are ready for the encryption stage.

6.3.3. Homomorphic Encryption. We use the Brakerski-
Gentry-Vaikuntanathan (BGV) [36] scheme implemented
in HELib.3 Their implemented version supports bootstrap-
ping, but we use it as a leveled homomorphic encryp-
tion scheme. Furthermore, we use ciphertext packing and
encrypt s = 4096 client elements per ciphertext. We
use a plaintext modulus of t = 40 961 to allow for
the cardinality predicate to be computed on top of the
DiPSI-CA. If a predicate requires an even larger plaintext
modulus, the Chinese Remainder Theorem (CRT) could
be used to artificially inflate the plaintext modulus space
exponentially in the number of ciphertexts by applying
the computations over multiple ciphertexts with co-prime
plaintext moduli as described in [43].

Algorithm 1 ENCRYPTDIPSI

1: /*Client Hashing-to-bins (using dual hash)*/

2: for each client element x ∈ X do
3: Compute H1(x) and H2(x).
4: Append x to whichever of Tc[H1(x)] and Tc[H2(x)] contains fewest

elements.
5: Append dummy elements to fill each bin in Tc to γ.
6: /*Client encoding and encryption*/

7: for each batch i ∈ [γ] do
8: for each bit j ∈ [`] do
9: veci,j = [xi,1[j], xi,2[j], . . . , xi,m[j]]

10: ci,j = Enc(veci,j)

11: Client sends the ciphertexts ci,j for all i ∈ [γ], j ∈ [`] to server.

6.4. Server Computation and Decryption for Dif-
ferentially Private Set Intersection (ε-DiPSI)

Details for computing the differentially private set
intersection between two sets X and Y and the procedure
for calculating matches on the server side, along with the
client decryption, can be found below.

Recall that in Algorithm 1 the client constructs batches
of size m and sends them encrypted to the server (plaintext
size is padded to a multiple of s). The server receives

3. https://github.com/homenc/HElib/

https://github.com/homenc/HElib/

these batches and runs Algorithm 2. Conceptually, this
algorithm achieves ε-DP by running an homomorphic
implementation of the randomized response algorithm in
two stages. In the first stage, the server flips a coin for
each element k ∈ [m] in each client batch i ∈ [γ], such
that if the result is “heads” (coin = 1 in the algorithm)
the algorithm will return whether or not the client element
is in the server data set. If, however, the result of the coin
flip is “tails”, the server instead flips a second coin. The
second coin flip result determines whether the algorithm
returns a match or a non-match for the client element.

The server matching algorithm is described in Algo-
rithm 2 and illustrated in Figure 3. As a preliminary step,
the server creates the table Ts by hashing each element
y ∈ Y using both H1 and H2, and appending y to
both bins Ts[H1(y)] and Ts[H2(y)]. Then, the algorithm
proceeds independently for each client batch i ∈ [γ], using
a fresh copy T ′s of Ts. We describe the matching process
for a single client batch below.

Recall that the ciphertexts ci,j (for all j ∈ [`]) contain
encrypted versions of xi,1, xi,2, . . . , xi,m. For each of
these elements, the server flips a biased coin. If the result
of the kth coin flip is “tails”, the server fills the kth
bin of their table T ′s with dummy elements and sets a
flag flag[k] = 1 to remember the result of the coin flip
(lines 5-14). After running this process, the server encodes
T ′s following the same approach as the client (lines 16-
19). This encoding generates the plaintext vectors veci′,j
(i′ ∈ [µ], j ∈ [`]), where each vector contains the the
jth bit of all the m elements in the i′th server batch.
The algorithm then proceeds to the matching phase. First,
the server compares the ith client batch with every server
batch i′ ∈ [µ]. This comparison is achieved by first
computing the vectors Mi′,i,j = ci,j ⊕ ¬veci′,j for all
j ∈ [`] and then performing an AND operation over all
of them. The result, denoted Mi′,i, is an encryption of a
vector that contains ones in those positions k where xi,k
was found in the i′th server batch, and zeroes otherwise.
Then, the server homomorphically adds Mi′,i over all the
server batches i′ ∈ [µ], such that the resulting vector
Mi contains (encrypted) ones where xi,k was found in
the server database (lines 21-26). Note that there will be
zeroes in Mi in those positions where the first coin flip
was tails (i.e., in those k ∈ [m] such that flag[k] = 1).
For each of these forced non-matches {k|flag[k] = 1},
the server proceeds with the second coin flip and adds a
one to the kth position of Mi if the result of the coin
flip is heads, and leaves the zero otherwise. Note that all
these operations are performed in the encrypted domain,
so the server never learns any information about the client
database or the intersection X ∩ Y. Finally, the server
returns Mi to the client, who then decrypts it to recover
an ε-DP version of the set intersection for the ith client
batch. The process is repeated for all i ∈ [γ]. Note that
the computations for each client batch are independent, so
our algorithm allows parallelization among client batches.

DECRYPTDIPSI. Upon receiving each Mi, the client de-
crypts them and removes padding (if it was added to match
the plaintext size parameter s). The result is a vector of
size m with either zeroes or ones. As mentioned above,
a 1 at position k indicates that either xi,k was found
in the server database or that it was not found but the

[...]

client batch server batchvs

[...]

[...]

matches

[...]1 10 0

client kth element
in ith bin matched

Figure 3. Server Side Matching Protocol Computations

randomized response mechanism generated a fake 1 so
as to achieve differential privacy. Note that the client can
discard the matches for those client elements that were
dummies xi,k = d.

Algorithm 2 COMPUTEDIPSI

1: /*Server hashing-to-bins*/

2: for each server element y ∈ Y do
3: Append y to the bin Ts[H1(y)] and to the bin Ts[H2(y)]

4: for each client batch i ∈ [γ] do
5: Copy the server table T ′

s = Ts to compare with the ith client batch.
6: Initialize flag vector to m zeroes: flag = [0, 0, . . . , 0].
7: for each bin element k ∈ [m] do
8: coin

p
←$ {0, 1} //Flip a biased coin with weight p

9: if coin = 1 (heads) then
10: No change to server plaintexts
11: else
12: Set all elements in T ′

s[k] to dummy elements to force non-
matches

13: Save flag[k] = 1 to indicate forced no match

14: /*Server encoding*/

15: for each server batch i′ ∈ [µ] do
16: for each bit j ∈ [`] do
17: veci′,j = [yi′,1[j], yi′,2[j], . . . , yi′,m[j]]

18: /*Intersection of the ith client batch and T ′
s */

19: for each server batch i′ ∈ [µ] do
20: for each bit j ∈ [`] do
21: Mi′,i,j = ci,j ⊕ ¬veci′,j
22: Mi′,i =

∧`
j=1Mi′,i,j

23: Mi =
∑µ

i′=1
Mi′,i (mod 2).

24: /*Differential privacy*/

25: Initialize an m-sized noise vector: noise = [0, 0, . . . , 0].
26: for each batch element k ∈ [m] do
27: if flag[k] = 1 then
28: coin

q
←$ {0, 1}

29: noise[k] = coin.
30: Mi = Mi + noise

31: Send the encrypted matching results Mi, for all i ∈ [γ], to the client.

6.5. Server Computation and Decryption for DP
Set Intersection Cardinality (ε-DiPSI-CA)

The stages and computations for executing the DiPSI-
CA protocol initially proceed in the same way as the
DiPSI protocol detailed in the previous section. Two of
the key differences between DiPSI and DiPSI-CA, other
than the results they return, are first the differential privacy
mechanisms employed, and second, DiPSI-CA requires
additional post processing on the server side after com-
puting the intersection before the result is returned to the
client. Due to these similarities we only discuss the details
of the differentially private cardinality steps reflected in
Lines 19-23 of Algorithm 3.

After computing the set intersection, following the
same procedure as DiPSI, the DiPSI-CA protocol is left
with a match vector Mi for each batch provided by

the client. The server first sums all of the Mi vectors
together to produce a result vector M . This result M is
the encryption of a vector whose kth element contains
the number of matches of the elements in the client’s kth
bin. Next, the server generates a series of random values,
one for each bin, such that the random values sum to zero
(mod t = 40 961). The server homomorphically adds these
values to M so that the overall cardinality is unchanged.
Finally, the server constructs a noise vector where the
value in its last bin is sampled from a Laplace distribution.
This noise vector is then summed with M , and the result is
sent back to the client. Note that all of these operations are
performed in the encrypted domain, and the server never
learns any information about the intersection cardinality.

DECRYPTDIPSI-CA. The client receives exactly one result
ciphertext M , which encodes the set intersection cardinal-
ity as the sum over all elements. The client decrypts M to
a vector of natural numbers {0, .., t− 1}s, where t is the
chosen plaintext modulus. Finally, the client obtains the
differentially private set cardinality by taking the sum over
all elements modulo t. Note that the client cannot gain
any information about which of their elements x ∈ X are
actually in Y as each slot in M appears uniformly random
(with the exception that the sum of all of the elements in
M is the set intersection plus the Laplacian noise). Also,
the Laplacian noise protects the real cardinality value in
an ε-DP way, which we will prove in the next section.

Algorithm 3 COMPUTEDIPSI-CA

1: /*Server hashing-to-bins*/

2: for each server element y ∈ Y do
3: Append y to the bin Ts[H1(y)] and to the bin Ts[H2(y)]

4: /*Server encoding*/

5: for each server batch i′ ∈ [µ] do
6: for each bit j ∈ [`] do
7: veci′,j = [yi′,1[j], yi′,2[j], . . . , yi′,m[j]]

8: for each client batch i ∈ [γ] do
9: /*Intersection of the ith client batch and Ts */

10: for each server batch i′ ∈ [µ] do
11: for each bit j ∈ [`] do
12: Mi′,i,j = ci,j ⊕ ¬veci′,j
13: Mi′,i =

∧`
j=1Mi′,i,j

14: Mi =
∑µ

i′=1
Mi′,i.

15: M =
∑γ
i=1Mi. //Total matches in each client bin

16: /*Differential privacy*/

17: Add a random value rk to each element in M such that
∑s
k=1 rk = 0

mod t.
18: Generate Laplace noise L←$ Lap(1/ε).
19: Construct a noise vector of length s where the only non-zero value is the

last element set to L: noise = [0, . . . , 0, L].
20: Compute M = M + noise.
21: Return M to client.

6.6. Algorithm Modifications When Using Nested
Cuckoo Hashing

We have explained how our protocols work using dual
hashing as the hashing-to-bins technique. For complete-
ness, below we explain the modifications that would need
to be implemented when using nested cuckoo hashing:

Encryption. As explained in Section 4.5.2, the client
hashes their elements into four tables T ic (i = 1 to 4)
and places some elements in a stash. The client applies

the encoding techniques to each table independently, as
well as the stash, and sends the resulting ciphertexts to
the server.

Server Computation and Decryption. For each client
table i = 1 to 4, the server creates another table T is and
hashes all elements y ∈ Y into that table using hash
function Hi(x). Then, the ciphertexts that correspond to
client encodings of table T ic are compared to table T is .
Each server element is compared to each stash element.

7. Analysis

In this section, we study the complexity of our algo-
rithms in terms of communication and computation costs,
and analyze their privacy, security, and utility.

7.1. Analysis of ε-DiPSI

7.1.1. Complexity Analysis. For the following complex-
ity analysis we assume the DiPSI algorithm uses the
nested cuckoo hashing described in Section 4.5.2. We first
introduce a general result of nested cuckoo hashing:

Theorem 1. Let the client set X be a set hashed using
nested cuckoo hashing and let the server set Y be a set
hashed using simple hashing, where |X| = m, |Y| = n,
and n > m logm. Define a nested cuckoo hashing struc-
ture where H1(x) and H2(x) are hash functions mapping
to tables T 1

c and T 2
c of size m, H3

c (x) and H4
c (x) are

hash functions mapping to tables T3 and T4 of size m2/3,
and the stash has a constant size c. The intersection X∩Y
can be computed using O(n) comparisons.

Proof. As with the use of conventional cuckoo hashing
(described in Section 4.5.4), while the client performs
nested cuckoo hashing, the server must perform simple
hashing. The server hashes every element in the set Y into
a table T is using hash function Hi(x), for i = 1, 2, 3, 4.
Note that T 1

s and T 2
s have m bins, while T 3

s and T 4
s have

m2/3 bins.
Since the number of server elements n is much larger

than the number of client elements m, we can compute the
number of bins in each server table using the classic balls-
into-bins problem [45], [46] such that if n > m logm, the
expected maximum load for any particular bin in T 1

s or
T 2
s can be calculated as

n

m
+

√
n logm

m
. (6)

For the secondary tables T 3
s and T 4

s , replace m for m2/3

in (6). The server compares every single element in the
kth client bin to the number elements in the kth server
bin given by (6). The total number of comparisons with
the table T 1

s , since there are m bins, is

m

(
n

m
+

√
n logm

m

)
= n+

√
nm logm = O(n) , (7)

since m logm < n. The total number of comparisons with
T 2
s is the same. Likewise, we can show that total number

of comparisons with the secondary table is O(n) (replace
all m’s above for m2/3). Finally, the server compares

every stash element (a constant number c) with T 1
s , which

also results in communication cost of O(n). This means
that the total required number of comparisons using nested
cuckoo hashing is O(n).

Now, we are ready to state the communication and
computation complexity theorems of DiPSI:

Theorem 2. The communication complexity of DiPSI
where the hashing-to-bins method is nested cuckoo hash-
ing is O(m) for m client elements and n server elements.

Proof. Trivially, T 1
c , T 2

c , T 3
c , T 4

c , and the stash must be
sent encoded from the client to the server. T 1

c and T 2
c are

each of size m, T 3
c and T 4

c are each of size m2/3 and the
stash is of size c, where c is some constant. Each element
in a bin has ` bits. Therefore, the communication from
client to server and server to client is 2(2m+2m2/3+c)`,
or O(m).4

Note that a communication cost of O(m) is optimal,
since the client always needs to send at least all the
elements x ∈ X to the server.

Theorem 3. The computation complexity of DiPSI where
the hashing-to-bins method is nested cuckoo hashing is
O (n+m) for m client elements and n server elements
with n > m logm.

Proof. Both the server and the client have to perform the
necessary hashing steps. The client hashes m elements,
while the server hashes n elements four times (once for
each hash function the client uses).

The main computation occurs during the comparison
stage required to compute the set intersection. As stated in
Theorem 1, computing the set intersection when the client
uses nested cuckoo hashing while the server employs sim-
ple hashing requires O (n) comparisons. The remaining
4m+ c decryptions do not significantly contribute to the
computation costs such that the total computation costs
can be computed as

m+ 4n+O(n) + 4m+ c.

Therefore, the computation cost for DiPSI when using
nested cuckoo hashing is O(n+m).

Note that the computation cost can be written as
O (n), since we are assuming m logm < n. This is
asymptotically optimal, since every server element needs
to be compared with at least one client element.

7.1.2. Privacy Analysis.

Theorem 4. Mechanism MRR−SI satisfies ε-DiPSI as per
Definition 6, with

ε = log

[(
1 +

p

(1− p)q

)(
1 +

p

(1− p)(1− q)

)]
.

(8)

Proof. Let V be the random binary vector recovered by
the client in DiPSI after decryption. Let xk be the kth
client element in X. If xk ∈ Y, then the kth bit in V [k]

4. Note that, in order to be comparable with previous works, we are
assuming that ` is a constant and thus does not affect our asymptotic
analysis.

will be one if the first coin flip shows up heads, or if it
is tails and the second coin flip shows up heads, i.e.,

Pr(V [k] = 1|xk ∈ Y) = p+ (1− p)q . (9)

Likewise, we can compute

Pr(V [k] = 0|xk ∈ Y) = (1− p)(1− q) (10)
Pr(V [k] = 1|xk /∈ Y) = (1− p)q (11)
Pr(V [k] = 0|xk /∈ Y) = p+ (1− p)(1− q) . (12)

Since MRR−SI performs the comparison of each element
independently, we can write

Pr(MRR−SI(X,Y) = v) =

m∏
k=1

Pr(V [k] = v[k]|xk ∈ Y) .

(13)
Recall that ε can be defined as an upper bound for the

ratio
L .
=

Pr(MRR−SI(X,Y) = v)

Pr(MRR−SI(X,Y′) = v)
≤ eε . (14)

We need to find which combination of client data X,
neighbouring datasets Y ∼ Y′ and output vector v maxi-
mize this ratio. We can plug (13) into (14) and get

L =

m∏
k=1

Pr(V [k] = v[k]|xk ∈ Y)
Pr(V [k] = v[k]|xk ∈ Y′)

(15)

Let y ∈ Y and y′ ∈ Y′ be the element in which these
data sets differ (i.e., y /∈ Y′ and y′ /∈ Y). Let’s consider
different cases for y and y′.

1) If y, y′ /∈ X, then all terms in the product in (15)
are one, since X∩Y = X∩Y′. Therefore, in this
case L = 1.

2) If y /∈ X but y′ ∈ X then there will be a
single non-one element in the product in (15),
corresponding to the index k such that xk = y′.
The same happens if y ∈ X but y′ /∈ X.

3) If both y, y′ ∈ X, however, there will be two
terms in (15) that can be larger than one, so this
is the worst case that we need to analyze.

Therefore, let’s consider y, y′ ∈ X, and use indices k
and k′ such that xk = y and xk′ = y′. We have

L ≤ Pr(V [k]=v[k]|xk∈Y)
Pr(V [k]=v[k]|xk /∈Y′) ·

Pr(V [k′]=v[k′]|xk′ /∈Y)
Pr(V [k′]=v[k′]|xk′∈Y′) .

(16)
By looking at the probabilities in (9) to (12) above,

we can see that this is maximized when v[k] = 1 and
v[k′] = 0. In that case,

L ≤ p+ (1− p)q
(1− p)q

· p+ (1− p)(1− q)
(1− p)(1− q)

= eε , (17)

which concludes our proof.

7.1.3. Security Analysis.

Theorem 5. Algorithm 1 with server computation Algo-
rithm 2 satisfies ε-SIM-CDiPSI as per Definition 7 for the
mechanism MRR−SI .

Proof. We prove Theorem 5 in two steps. First, we prove
that Algorithm 2 correctly produces the output of mech-
anism MRR−SI . Second, we prove that we can simulate

(additional) output using only the party’s input and the
mechanism’s output.

Correct output of MRR−SI . The server flips a coin
for randomized response for each element x ∈ X. The
set intersection is computed truthfully on “heads” by
comparing to all elements that hashed to the same bin.
On tails, the element is matched with a dummy element
that necessarily results in a mismatch. Then another coin
is flipped and if it is “heads”, the mismatch result is
negated by homomorphically adding a 1. Hence, Algo-
rithm 2 returns the (encrypted) randomized response for
each element xi.

Simulation of (additional) output: Dummy elements
from the client. The client includes several dummy el-
ements to even the number of elements in the bins. The
server cannot distinguish these dummy elements from real
elements in the set and must also match these elements.
This may result in “fake” matches for dummy elements, if
the first coin shows up “tails” and the second one “heads”.
However, the client can simulate the number of “fake”
matches from its set size and the protocol parameters, i.e.,
the number of dummy elements. Given the probabilities
of the coin flips, which are deducible from ε, the client
can simulate the corresponding number of random events.
Since each random event is independent of the server’s
input, this leaks no information about the server’s input.

Note that the server’s view can be simulated by a
number of semantically secure ciphertexts linear in the
client’s set size.

7.1.4. Utility. Mechanism MRR−SI returns the set in-
tersection with both false negatives and false positives.
Following (11) and (10), the probability of false positives
is (1 − p)q while the probability of false negatives is
(1−p)(1−q). Note that, if we configure p and q to make
any of these probabilities zero, then ε → ∞ according
to (8). This proves that it is not possible to achieve a
differentially private set intersection without both types
of error.

Achieving low values of ε in DiPSI requires high false
positive and false negatives rates, which are not reasonable
in some use cases. We note that this issue is not unique
to DiPSI, but happens with all mechanisms that reveal a
differentially private intersection (our proof in Theorem 4
applies to any mechanism that hides the intersection with
false positives and false negatives).

7.2. Analysis of ε-DiPSI-CA

7.2.1. Complexity. For the following complexity analy-
sis we assume the DiPSI-CA algorithm uses the nested
cuckoo hashing described in Section 4.5.2.

Theorem 6. The communication complexity of DiPSI-
CA where the hashing-to-bins method is nested cuckoo
hashing is O (m) for m client elements and n server
elements.

Proof. Computing the cardinality does not require any
additional communication beyond that of DiPSI and there-
fore the result follows from Theorem 2 as O(m).

Theorem 7. The computation complexity of DiPSI-CA
where the hashing-to-bins method is nested cuckoo hash-

ing is O (n+m) for m client elements and n server
elements with n > m logm.

Proof. The additional computation required to perform
DiPSI-CA is limited to the computation of the Laplace
noise and the generation of m random values. Therefore,
the computation complexity still follows from Theorem 3
and is O(n+m).

7.2.2. Privacy Analysis.

Theorem 8. Mechanism MLAP−CA satisfies ε-DiPSI as
per Definition 6.

Proof. Let S .
=
∑m

k=1 V [k] = |X ∩ Y| + L, where
L←$ Lap(1/ε), and therefore

Pr(MLAP−CA(X,Y) = v) = Pr(S = s| |X ∩ Y|) (18)

From the Laplacian distribution, we can write

Pr(S = s| |X ∩ Y|) = ε

2
· e−ε|s−|X∩Y|| . (19)

Therefore, we can prove that

L =
Pr(MLAP−CA(X,Y) = v)

Pr(MLAP−CA(X,Y′) = v)
(20)

=
Pr(S = s| |X ∩ Y|)
Pr(S = s| |X ∩ Y′|)

(21)

=
ε
2 · e

−ε|s−|X∩Y||

ε
2 · e−ε|s−|X∩Y

′|| (22)

= eε(|s−|X∩Y
′||−|s−|X∩Y||) ≤ eε , (23)

where the last step comes from the fact that, since Y and
Y′ are neighbouring, they can only differ in at most one
element. This concludes our proof.5

7.2.3. Security Analysis.

Theorem 9. Algorithm 1 with server computation Algo-
rithm 3 satisfies ε-SIM-CDiPSI as per Definition 7 for the
mechanism MLAP−CA.

Proof. We prove Theorem 9 in the same two steps as
Theorem 5.

Correct output of MLAP−CA. Algorithm 3 computes
the set intersection cardinality for each element in a batch.
Hence, the sum of all elements in a batch is |X ∩ Y|. It
now adds Laplace noise Lap(1/ε) to the last element.
To hide the sum in each element of a batch it adds a
uniform random number from Zt such that the sum over
all elements is 0.

Simulation of output. Consequently, the (encrypted)
message from the server to the client can be simulated
as follows: Let s be the batch size. Choose s− 1 uniform
random elements from Zt and let their sum be S. Set the
last element in the batch to be |X ∩ Y|+ Lap(1/ε)− S.

The view of the server can again be simulated using
semantically secure ciphertexts.

5. Note that the Laplace noise added in Algorithm 3 is a discrete
(mod t) version of the Laplace noise. This does not affect our proof,
since the fact that our mechanism is ε-DP for the continuous Laplacian
(19) implies that it is also ε-DP when the observation is quantized.

7.2.4. Utility. Since the mechanism MLAP−CA reports
an aggregate value plus some added noise, it can provide
high privacy levels without sacrificing utility. Formally,
the noise added by MLAP−CA is below −ε−1 ·log(1−P),
for a specified probability P . For example, using a high
privacy level of ε = 0.1, the noise is below 40 with a
probability of 0.98. This amount of noise is negligible
when the true set cardinalities are in the tens or hundreds
of thousands elements, such as may be the case in our
examples in Section 2.

8. Performance Evaluation

In the following, we evaluate DiPSI implemented with
dual hashing.6 We describe our parameter choices, how
DiPSI compares with other approaches, and the computa-
tion and communication overhead.

8.1. Setup

We implement DiPSI using the beta version of HElib
1.0.0 by Halevi et al. [47], which uses the BGV [36]
encryption scheme with bootstrapping. We benchmark the
matching time, the total communication cost, and the
maximum number of server elements in any bin. Our
experiments are for unbalanced PSI where m < n with
client set size m and server set size n. We use ` = log2 n
so every server element is representable with ` bits and a
seemingly large plaintext modulus of t = 40 961 to ensure
the intersection cardinality fits within the modulus. We set
a security of k = 128 bits, and a modulus chain length of
L = 300 when ` ≤ 16, or L = 450 when 16 < ` ≤ 32.
These values of L support the required multiplicative
depth, which is O (log `), without bootstrapping. We set
the cyclotomic field c = 8192 which gives us a slot
count of s = 4096 slots. The cyclotomic field was
chosen heuristically to work well for our evaluation; other
choices may lead to better performance. We confirm the
security of our simulation parameters with the HELib
function securityLevel(), which returns a security
level of 101.5 and 112.9 bits for L = 300 and L = 450,
respectively. Our experiments were executed on a single-
threaded process on an Intel E5-2650 clocked at 2.00 GHz
with access to 256 GB of main memory.

8.2. Computation

Table 2 shows the runtime in seconds of DiPSI and
DiPSI-CA (average and standard deviation of 10 runs), as
well as previous approaches [8], [11], for m = 212 =
4096 client elements (we chose m′ = 5535 for [11]
since that’s the setting closest to ours). We show the mi-
crobenchmarks of our protocols for their initialization, the
overall matching time (i.e., comparing all client batches
with all server batches), the average time it takes to com-
pare a single client and server batch, and the differential
privacy operations of the algorithm. Our algorithms are
considerably slower than previous work, since we do not
perform the matching in parallel (HElib does not allow
for easy parallelization). In practice, parallelizing could
allow to reduce the matching time to a single per batch

6. Code available at https://github.com/cryspuwaterloo/DiPSI.

Table 2. RUNTIME IN SECONDS OF PROTOCOLS FOR m = 212

Protocol n = 212 n = 216 n = 220

CLR [11] - 1.7 8.7
PSWW [8] 1.2 8.5 120.7

DiPSI
Init 7.7± 0.4 8.6± 0.4 11.3± 0.4

Matching 84.2± 7.2 521.0± 6.7 11 680.3± 23.3
(per batch) (3.4± 0.07) (4.07± 0.05) (9.27± 0.02)

DP 0.08± 0.00 0.08± 0.01 0.08± 0.01
Total 92.2± 7.1 531.62± 6.6 11 719.4± 23.2

(4.6± 0.4) (6.6± 0.4) (29.9± 0.6)
DiPSI-CA

Init 7.8± 0.5 8.5± 0.4 11.2± 0.35
Matching 81.4± 1.0 520.2± 5.8 11 712.2± 73.8

(per batch) (3.39± 0.04) (4.06± 0.05) (9.30± 0.06)
DP-CA 0.05± 0.02 0.06± 0.02 0.14± 0.02

Total 89.5± 1.3 530.7± 5.7 11 751.9± 74.5
(4.7± 0.4) (6.5± 0.4) (30.4± 1.0)

comparison, which would substantially reduce the running
time of our algorithm. We show an estimation of the time
it would take to run the algorithm while parallelizing the
batch comparisons in parenthesis under the total running
time of each algorithm.

Table 2 also shows that the running times of DiPSI
and DiPSI-CA are almost identical. This is because the
computational cost of our algorithms is largely dominated
by performing the intersection (lines 19-22 in Alg. 2 and
lines 10-13 in Alg. 3). The additional cost incurred by the
coin flipping that achieves differential privacy in Alg. 2 or
the cardinality computation and noise addition in Alg. 3
is negligible. This suggests that computing more complex
predicates on top of the intersection will incur very little
additional cost.

Figure 4 shows the computation time of Algorithm 2
for varying numbers of client and server elements 210 ≤
m ≤ 216 and 212 ≤ n ≤ 221. Note that the number
of server elements is plotted on a logarithmic axis. As
expected, the computation time grows linearly with the
number of server elements. We also observe that the
matching time is very large for m = 210, reaches its
minimum around m = 212, and then increases with m.
This is because increasing m decreases the number of
elements in any bin on the server (see Figure 5), which
means that overall fewer comparisons have to be com-
puted. This phenomenon in combination with the chosen
minimal batchsize of s = 4096 turns into a disadvantage
for small m = 210 as the runtime is significantly higher
than for m = 212.

Although these running times may be too long for
some applications when no parallelization is implemented,
there are use cases where they are sufficient (see Sec-
tion 2).

8.3. Communication

Table 3 shows the communication cost in MB of
DiPSI (m = 4096) and the approaches in [8], [11].
Our experiments also reveal that the public key alone
consumes a baseline of about 60MB for L = 300 and
about 79MB for L = 450. For n = 220 server elements
our protocol requires only 232MB of total communication
costs as opposed to 2.54GB as in the approach from
Pinkas et al. [8]. The communication complexity of Chen

https://github.com/cryspuwaterloo/DiPSI

212 214 216 218 220

Number of Server Elements

0

200

400

600

800

1000

1200

1400

Ti
m

e
in

 M
in

ut
es

Matching Time
m=1024
m=2048
m=4096
m=8192
m=16384
m=32768
m=65536

Figure 4. Total Computation Cost for DiPSI

212 214 216 218 220

Number of Server Elements

0

500

1000

1500

2000

M
ax

im
um

 B
in

 S
ize

Maximum Server Bin Size
m=1024
m=2048
m=4096
m=8192
m=16384
m=32768
m=65536

Figure 5. Maximal Number of Elements per Server Bin, µ

et al. [11] does not include the size of the public key,
but instead only the ciphertexts, which partly explains
why their cost is significantly lower than ours. Also, the
approach in [11] does not allow to compute predicates on
top of the intersection. We do not show the communication
cost of DiPSI-CA, but it is smaller since the server only
returns O(1) ciphertexts to the client instead of O(m).

Figure 6 shows the communication cost of DiPSI when
varying both the number of client and server elements.
As we explain in Section 8.1, in our evaluation we set
` = log2 n. Therefore, as we increase n, the number of bits
that we use to represent an element increases, and so does
the communication cost (logarithmically with n, which
shows linearly in the plot). Additionally, when ` > 16 we
increase the modulus chain length from L = 300 to 450
to accommodate the multiplicative depth of the circuit.
This increase in L causes the sudden bandwidth increase
in Figure 6. We note that, as predicted in Section 7.1.1,
the communication cost only depends linearly on m, and
not n, if ` is kept fixed.

In summary, in the balanced PSI setting (n = m),
DiPSI cannot compete with other protocols that also allow
the computation of predicates over the intersection [8].

Table 3. COMMUNICATION IN MB OF PROTOCOLS FOR m = 212

Protocol n = 212 n = 216 n = 220
Binary
Circuit

CLR [11] - ≈ 3 ≈ 6 7
PSWW [8] 9 149 2540 3

DiPSI 119 133 232 3

212 214 216 218 220

Number of Server Elements

0

500

1000

1500

2000

2500

Da
ta

 in
 M

B

Communication Overhead
m=1024
m=2048
m=4096
m=8192
m=16384
m=32768
m=65536

Figure 6. Total Communication Cost for DiPSI

However, DiPSI achieves optimal complexity for unbal-
anced sets, as shown in our experiments that increase the
size of the larger set (n).

9. Conclusion

In this work, we present a new variant of private set
intersection and present our new protocols for PSI. Our
protocols go beyond protecting the elements outside of
the intersection and compute differentially private results,
providing protection for use cases where the intersection is
also sensitive. We identify a number of real-world problem
settings of interest where the stakeholders benefit from
accepting a margin of variance in inferences based on the
aggregate data in trade for protecting the set intersection.
Such use cases include instances where the set intersection
to be computed is unbalanced; such as in the case of
medical research and genome databases. Our protocols are
optimized to suit such settings where one dataset is much
larger than the other while still achieving optimal compu-
tational and communication complexity. Additionally, our
protocols have applicability beyond our initial predicates
as the adaptability that follows from the circuit-based
design enables us to support computation of arbitrary
predicates over the intersection.

Acknowledgment

We gratefully acknowledge the support of NSERC for
grants RGPIN-05849, RGPAS-507908, CRDPJ-531191,
and DGDND-00085, the Royal Bank of Canada and Eu-
ropean Union’s Horizon 2020 Research and Innovation
Programme under grant agreement n. 830927 (CONCOR-
DIA) for funding this research.

References

[1] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Efficient
private matching and set intersection. In International conference
on the theory and applications of cryptographic techniques, pages
1–19. Springer, 2004.

[2] Bernardo A Huberman, Matt Franklin, and Tad Hogg. Enhancing
privacy and trust in electronic communities. EC, 99:78–86, 1999.

[3] Catherine Meadows. A more efficient cryptographic matchmaking
protocol for use in the absence of a continuously available third
party. In 1986 IEEE Symposium on Security and Privacy, pages
134–134. IEEE, 1986.

[4] Moti Yung. From mental poker to core business: Why and how to
deploy secure computation protocols? In Proceedings of the 22nd
ACM Conference on Computer and Communications Security,
pages 1–2, 2015.

[5] Mark Bergen and Jennifer Surane. Google and
mastercard cut a secret ad deal to track retail sales,
2018. https://www.bloomberg.com/news/articles/2018-08-30/
google-and-mastercard-cut-a-secret-ad-deal-to-track-retail-sales.

[6] Yves-Alexandre De Montjoye, Laura Radaelli, Vivek Kumar Singh,
and Alex Pentland. Unique in the shopping mall: On the reiden-
tifiability of credit card metadata. Science, 347(6221):536–539,
2015.

[7] Yan Huang, David Evans, and Jonathan Katz. Private set inter-
section: Are garbled circuits better than custom protocols? In
Proceedings of the 19th Annual Network and Distributed System
Security Symposium, 2012.

[8] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi
Wieder. Efficient circuit-based psi via cuckoo hashing. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2018, pages 125–157, Cham, 2018.
Springer International Publishing.

[9] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and
Avishay Yanai. Efficient circuit-based psi with linear communi-
cation. In Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 122–153. Springer,
2019.

[10] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate
secure computation with malicious adversaries. In Proceedings of
the 21th USENIX Security Symposium, pages 285–300, 2012.

[11] Hao Chen, Kim Laine, and Peter Rindal. Fast private set in-
tersection from homomorphic encryption. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, pages 1243–1255, New York, NY, USA, 2017.
ACM.

[12] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled
psi from fully homomorphic encryption with malicious security. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 1223–1237. ACM, 2018.

[13] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Uni-
versally utility-maximizing privacy mechanisms. SIAM J. Comput.,
41(6):1673–1693, 2012.

[14] Eric W. Burger, Michael D. Goodman, Panos Kampanakis, and
Kevin A. Zhu. Taxonomy model for cyber threat intelligence
information exchange technologies. In Proceedings of the 2014
ACM Workshop on Information Sharing & Collaborative Security,
pages 51–60, 2014.

[15] Daniel Rigden and Xose Fernandez. The 2018 nucleic acids
research database issue and the online molecular biology database
collection. Nucleic Acids Research, 46(D1):D1–D7, 2018.

[16] Teri A. Manolio. Genomewide association studies and assess-
ment of the risk of disease. New England Journal of Medicine,
363(2):166–176, 2010.

[17] Carmit Hazay and Kobbi Nissim. Efficient set operations in
the presence of malicious adversaries. Journal of cryptology,
25(3):383–433, 2012.

[18] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and
Ni Trieu. Efficient batched oblivious prf with applications to
private set intersection. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages
818–829, 2016.

[19] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending
oblivious transfers efficiently. In Annual International Cryptology
Conference, pages 145–161. Springer, 2003.

[20] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively
secure 1-out-of-n ot extension with application to private set inter-
section. In Cryptographers’ Track at the RSA Conference, pages
381–396. Springer, 2017.

[21] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable
private set intersection based on ot extension. ACM Trans. Priv.
Secur., 21(2):7:1–7:35, January 2018.

[22] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-
light: Lightweight private set intersection from sparse ot extension.
In Annual International Cryptology Conference, pages 401–431.
Springer, 2019.

[23] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster pri-
vate set intersection based on {OT} extension. In 23rd {USENIX}
Security Symposium ({USENIX} Security 14), pages 797–812,
2014.

[24] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner.
Phasing: Private set intersection using permutation-based hashing.
In 24th {USENIX} Security Symposium ({USENIX} Security 15),
pages 515–530, 2015.

[25] Moxie Marlinspike. The difficulty of private contact discovery. A
company sponsored blog post, 2014. https://whispersystems.org/
blog/contact-discovery/.

[26] Mark Manulis, Benny Pinkas, and Bertram Poettering. Privacy-
preserving group discovery with linear complexity. In Proceedsings
of the 8th International Conference on Applied Cryptography and
Network Security, pages 420–437. Springer Berlin Heidelberg,
2010.

[27] Alex Davidson and Carlos Cid. An efficient toolkit for computing
private set operations. In Josef Pieprzyk and Suriadi Suriadi,
editors, Information Security and Privacy, pages 261–278, Cham,
2017. Springer International Publishing.

[28] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and
private computation of cardinality of set intersection and union. In
Josef Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis, editors,
Cryptology and Network Security, pages 218–231, Berlin, Heidel-
berg, 2012. Springer Berlin Heidelberg.

[29] Michele Ciampi and Claudio Orlandi. Combining private set-
intersection with secure two-party computation. In Dario Catalano
and Roberto De Prisco, editors, Security and Cryptography for
Networks, pages 464–482, Cham, 2018. Springer International
Publishing.

[30] Sivakanth Gopi, Pankaj Gulhane, Janardhan Kulkarni, Judy Han-
wen Shen, Milad Shokouhi, and Sergey Yekhanin. Differentially
private set union. arXiv preprint arXiv:2002.09745, 2020.

[31] Xi He, Ashwin Machanavajjhala, Cheryl Flynn, and Divesh Srivas-
tava. Composing differential privacy and secure computation: A
case study on scaling private record linkage. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 1389–1406. ACM, 2017.

[32] Adam Groce, Peter Rindal, and Mike Rosulek. Cheaper private set
intersection via differentially private leakage. Cryptology ePrint
Archive, Report 2019/239, 2019. https://eprint.iacr.org/2019/239.

[33] Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart
Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata,
Languages and Programming, pages 1–12, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[34] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan.
Computational differential privacy. In Annual International Cryp-
tology Conference, pages 126–142. Springer, 2009.

[35] Xun Yi, Russell Paulet, and Elisa Bertino. Homomorphic encryp-
tion and applications, volume 3. Springer, 2014.

https://www.bloomberg.com/news/articles/2018-08-30/google-and-mastercard-cut-a-secret-ad-deal-to-track-retail-sales
https://www.bloomberg.com/news/articles/2018-08-30/google-and-mastercard-cut-a-secret-ad-deal-to-track-retail-sales
https://whispersystems.org/blog/contact-discovery/
https://whispersystems.org/blog/contact-discovery/
https://eprint.iacr.org/2019/239

[36] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (lev-
eled) fully homomorphic encryption without bootstrapping. ACM
Transactions on Computation Theory (TOCT), 6(3):13, 2014.

[37] Michael J Freedman, Carmit Hazay, Kobbi Nissim, and Benny
Pinkas. Efficient set intersection with simulation-based security.
Journal of Cryptology, 29(1):115–155, 2016.

[38] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing.
In Friedhelm Meyer auf der Heide, editor, Algorithms — ESA
2001, pages 121–133, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg.

[39] Udi Weider. Hashing, load balancing and multiple choice, 2016.
https://udiwieder.files.wordpress.com/2014/10/hashbook.pdf.

[40] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More
robust hashing: Cuckoo hashing with a stash. SIAM Journal on
Computing, 39(4):1543–1561, 2009.

[41] Michael T Goodrich, Daniel S Hirschberg, Michael Mitzen-
macher, and Justin Thaler. Fully de-amortized cuckoo hashing
for cache-oblivious dictionaries and multimaps. arXiv preprint
arXiv:1107.4378, 2011.

[42] Cynthia Dwork and Aaron Roth. The algorithmic foundations
of differential privacy. Foundations and Trends in Theoretical
Computer Science, 9(3–4):211–407, 2014.

[43] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. Manual for using homo-
morphic encryption for bioinformatics. Proceedings of the IEEE,
105(3):552–567, 2017.

[44] Hao Chen, Kim Laine, and Peter Rindal. Fast private set in-
tersection from homomorphic encryption. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 1243–1255. ACM, 2017.

[45] Valentin Fedorovich Kolchin, Boris Aleksandrovich Sevastyanov,
and Vladimir Pavlovich Chistyakov. Random allocations. 1978.

[46] Norman Lloyd Johnson and Samuel Kotz. Urn models and their
application; an approach to modern discrete probability theory.
1977.

[47] Shai Halevi and Victor Shoup. Helib-an implementation of homo-
morphic encryption. Cryptology ePrint Archive, Report 2014/039,
2014.

https://udiwieder.files.wordpress.com/2014/10/hashbook.pdf

	Introduction
	Use Cases
	Related Work
	Private Set Operations
	Differentially Private Set Computations

	Preliminaries
	Differential Privacy
	Private Set Operations
	Homomorphic Encryption
	PSI via Hashing-to-Bins
	Collision Handling and Hashing-to-Bins
	Cuckoo Hashing
	Nested Cuckoo Hashing
	Dual Hash Function with Bin Sizes 1
	Matching for Hashing-to-Bins

	Differentially Private Set Operations
	Algorithm Description
	Overview
	Hashing-to-Bins in DiPSI
	Encryption
	Hashing-to-Bins
	Batching
	Homomorphic Encryption

	Server Computation and Decryption for Differentially Private Set Intersection (-DiPSI)
	Server Computation and Decryption for DP Set Intersection Cardinality (-DiPSI-CA)
	Algorithm Modifications When Using Nested Cuckoo Hashing

	Analysis
	Analysis of -DiPSI
	Complexity Analysis
	Privacy Analysis
	Security Analysis
	Utility

	Analysis of -DiPSI-CA
	Complexity
	Privacy Analysis
	Security Analysis
	Utility

	Performance Evaluation
	Setup
	Computation
	Communication

	Conclusion
	References

